Derived Equivalences from Mutations of Quivers with Potential

نویسندگان

  • BERNHARD KELLER
  • DONG YANG
  • Bernhard Keller
چکیده

We show that Derksen-Weyman-Zelevinsky’s mutations of quivers with potential yield equivalences of suitable 3-Calabi-Yau triangulated categories. Our approach is related to that of Iyama-Reiten and ‘Koszul dual’ to that of Kontsevich-Soibelman. It improves on previous work by Vitória. In the appendix, the first-named author studies pseudo-compact derived categories of certain pseudo-compact dg algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Tilting Theory for Quivers and Related Categories

TILTING THEORY FOR QUIVERS AND RELATED CATEGORIES MORITZ GROTH AND JAN ŠŤOVÍČEK Abstract. We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary s...

متن کامل

Deformed Calabi-yau Completions

We define and investigate deformed n-Calabi-Yau completions of homologically smooth differential graded (=dg) categories. Important examples are: deformed preprojective algebras of connected non Dynkin quivers, Ginzburg dg algebras associated to quivers with potentials and dg categories associated to the category of coherent sheaves on the canonical bundle of a smooth variety. We show that defo...

متن کامل

Derived Equivalences for Triangular Matrix Rings

We generalize derived equivalences for triangular matrix rings induced by a certain type of classical tilting module introduced by Auslander, Platzeck and Reiten to generalize reflection functors in the representation theory of quivers due to Bernstein, Gelfand and Ponomarev.

متن کامل

Universal Derived Equivalences of Posets of Tilting Modules

We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their tilting modules are related by a simple combinatorial construction, which we call flip-flop. We deduce that the posets of tilting modules of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent.

متن کامل

Cluster Algebras, Quiver Representations and Triangulated Categories

This is an introduction to some aspects of Fomin-Zelevinsky’s cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009